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Two algorithms for the permanent multipole contribution to the mutual torques in a set of 
charge distributions are presented. The first is in the conventional Newtonian formulation; the 
second is in terms of generalized forces. Both noncooperative and cooperative algorithms for 
the induced dipole vector contribution are given. The algorithms are based on earlier 
algorithms for the permanent multipole and induced dipole vector contributions to the energy 
in the Maxwell Invariant Form. 

1. INTRODUCTION 

An algorithm has been developed for the calculation of the torque experienced by 
each of a system of polarizable, nonoverlapping charge distributions, 

D D,, 1 ,*-*, (1) 
where each Dj is characterized by 

Ptrj): the charge density of Dj when it is isolated from all other D,; (24 

a:(j): the ordinary dipole polarizability tensor for Dj. WI 

The contribution of the polarization to the torque has been approximated by the 
induced dipole vector contributions I(j), 

Z’(j) = a:(j) Ek(Dj); W-4 

E(Oi), the electric field experienced by Dj at its center of mass Oi. WI 
245 

0021-9991/82/080245-13$02.00/0 
Copyright c’ 1982 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



246 CAMPBELL AND MEZEI 

The contribution of the field derivatives to the induced dipole vectors as well as 
induced multipole contributions will be considered in a later article with an algorithm 
for induced multipole moments and energies. 

The proposed algorithm is based upon a multipole expansion, and makes use of the 
Maxwell invariant form (vide infra). Algorithms have been developed for this form 
for the calculation of the energies, electric fields, and induced dipole vectors in crystal 
lattices [l-3] and finite sets of distributions [4-61, and have been applied to both 
(H20)n [7,8] and to ices Ih, II, IX [9]. Following the derivation of the fundamental 
equations, the steps in this torque algorithm will be given, making use of the 
previously published algorithms. 

2. CALCULATION USING THE CONVENTIONAL NEWTONIAN DEFINITION: 
THE CONTRIBUTION OF THE P(~~)To THE TORQUE 

Let us define the following: 

p(rj): the permanent charge density of Dj ; (44 

T((j, 0,)): the torque exerted on D, about its center of mass, (4b) 
0,) by P(rj); 

E((j, cl)): the electric field at c, defined by p(rj). (4c) 

Then the conventional Newtonian definition of the torque about the center of mass in 
orthogonal coordinate systems in SI units becomes: 

T((.i 0,)) = 1 (rt - 0,) x E((.L r,)) p(rJ dr,; 

E((j, rl)) = -V”‘{(~KE~)-I} ,f I Ilr, - rj/I-’ drj 

= (~TTE,,-’ )‘p(rj) V”’ l/r, - rjI]-’ drj; (5b) 

V(j) = (a/L%,‘, a/&-,‘, a/&$) = -W’. (5c) 

In Section 3, use will be made of nonorthogonal frames and a tensor generalization of 
the definition of Eq. (5). Since the components of vectors transform by the 
contravariant law, the appropriate generalization to nonorthogonal frames which is 
consistent with the Newtonian definition for orthogonal frames, where the covariant 
and contravariant components of r and E are identical, is what Brillouin [ IOa] has 
called me densite’ contravariante tensorielle. In the convenient notation of McConnell 



TORQUES ON/FROM MULTIPOLES 247 

[ 1 la],’ this is a relative contravariant vector of weight +l (in the implicit tensor 
summation convention), 

T’((j, 0,)) = eik’T,,((j, o,)), (64 

Tkl((j9 Ot>> = 1 @k@) - ok@)> E,((j, rt>> h,) dr,- (6b) 

In Eq. (6a), the eik’ form a completely antisymmetric relative tensor of weight +l, 
with the transformation law from frame B to frame A 

eik’(A) = JM(B -+ A)/ M(A -+ B)kM(A + B)~M(A + B)~emnP(B), (74 

when the basis vectors between the two frames are related by the matrix equation 

and 

]M(B -+ A)]: the determinant; M(A+B)=M(B+A)-‘. 

Then, in every frame, 

p(A) = p(B) 

= +1, if (i, k, Z) is a cyclic permutation of (1,2, 3); 

=- 1, if (i, k, Z) is a permutation of (1,2, 3) which is not cyclic; 

= 0, if {i,k,l)#{1,2,3}. 

C’b) 

(7c) 

(W 

In this notation, the transformation law for the contravariant components of the 
torque relative vector is 

T’((j, O,), A) = lM(B -, A)[ M(A -, B)k Tm((j, O,), B). (8) 

The initial step in the algorithm is a Taylor series expansion of ((r, - rj(l -’ in the 
integral for the potential energy of Dj at r,, U((j, rl)), 

’ In contrast to Brillouin [lob], who used a generalization of axial vectors consistent with the conven- 
tional definition upon inversion of frames, McConnell [ 1 lb] uses a generalization as a true tensor, which 
is not consistent with the conventional definition upon inversion. 
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about a suitable Oj in Dj. Since the torque exerted on Dj will also be calculated, this 
will be the center of mass. This introduces the Nth-order Taylor moments about Oj, 

M((n, 7 n29 nj)v Oj) z ,( fi (r”(j) - O’(j))“qP(rj) drj; PW 
q=1 

N=n, +n,+n,. (lob) 

These Taylor moments are used in a published algorithm [4] to determine: 

(i) the components of characteristic directions, 

s((j, N), l),..., s((.i N), N), (114 

II s((.L WY s)ll = 13 l<q<N (lib) 

with respect to an intrinsic reference frame Lj for distribution Dj ; 

(ii) the scalar Nth-order multipole moment in the Maxwell invariant form [4], 
P’“‘(j), for the spherical harmonic defined by the Nth-order terms in the Taylor 
series. Then the mth covariant component of the field for a finite set of distributions 
is given by the multipole expansion in the Maxwell invariant form as, 

E,((j, rt)) = (411&J’ .f (N!)-‘PcN’(j) Nfi’ (s((j, N), q) - V”‘) ]]rl - rj;l-’ 1 , 
N=O q=l rj= oj 

(124 

where, for formal use of the algorithm, the (N + 1)th characteristic direction is taken 
to be the mth unit basis vector of the coordinate frame, 

s((j,N),N+ l)=e,. (12b) 

For crystals, ]]r, - rjl] - r is replaced by another function of a vector magnitude. After 
substitution of Eq. (12a) into Eq. (6), the order of differentiation using V’j’ and of 
integration over rl can be inverted so that it is only necessary to evaluate integrals of 
the form 

! . (6 - Of>dr,) /lrt - rjl(-’ dr,. (13) 

For this purpose, let pk(r,) be defined as the pseudodensity function, 

dYr,) = G-f - 03 dr,>. 
Then a Taylor series expansion of (I rl - rjI( -’ about rt = 0, in the integral, 

(14) 

J ‘pk(r,)llrI-rjll-‘dr,, (15) 
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yields the Nth-order Taylor moments, 

M((n,, 4, n3), O,, k) = 1 fi (r4(t) - Oq(t))n@(rJ dr, 
q=l 

= M((n, + S:, n, + S:, n3 + S:), 0,). 
(16) 

Thus each Nth-order Taylor moment for the pseudodensity pk(rr) is an (N + l)th- 
order Taylor moment for p(rl), which must be evaluated to determine the charac- 
teristic directions for both the calculation of the interaction energy between Dj and D, 
as well as the field which D, exerts on Dj. 

The relation between the Maxwell invariant forms for p(r,) and for p”(r,) is shown 
clearly by the construction of the zeroth- and first-order terms for the latter. Let 

{s((t, N), 4, k), 1 < q < NJ = set of characteristic directions in the 
Maxwell invariant form for the Nth-order spherical harmonic in the 
expansion of Eq. (15) for the pseudodensity; and (174 

P(“‘)((t, k)): the scalar multipole moment. (17b) 

Whereas the expansion of )I rt - rj]J - ’ in the integral defining the potential has no 
constant term when p(rJ is the density for a neutral distribution, the expansion in 
Eq. (15) for the pseudodensity pk(r,) contains a constant term, the contribution of a 
pseudocharge, which is one of the first-order Taylor moments of p(r,), 

The characteristic direction defined by the first-order spherical harmonic for pk(rt) is 
determined by three of the six second-order Taylor moments of p(r,), 

F = @f(l + a:, 6:, a:>, O,), M(@:, 1 + a:, a:), O,),M((6:, a:, I + S:), 0,)), (18b) 

40, I>, W=pJ(pII-‘3 Wk k)) = II P/I. (18~) 

Thus the steps in the calculation are: Step I. For each distribution Dj, calculate 
the Taylor moments about Oj, the M((n,, n2, Q), Oj) of Eq. (10). When p(rj) is the 
density defined by a single determinant wave function consisting of an LCGO, a 
tested program is available on request. Step II. Use the Taylor moments from 
Step I and the published algorithm [4] to determine the characteristic directions, 
s((j, N), q), 1 < q < N, and multipole moments, P’“‘(j) of Eq. (11) for p(rj) and a set 
of characteristic directions, s((t, N), q, k), 1 < q < N, and multipole moments, 
W(t, k)), of Eq. (17) for each of the three pseudodensities, pk(rJy 
1 < k < 3. Step III. For any desired set of positions and orientations, use one of 
the algorithms for crystals [ 1, 31 or for (H, 0), [ 51 to evaluate the expansions for the 
integrals of Eq. (6) (in SI units) 
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r,,((j, 0,)) = (47rs,)-’ Jf C (Nj! Nf!)-‘PcNj’(j) P’“f’((t, k))(-l)v: 
Nj N; 

Nit 1 

X qcl ts((j, Nj)T 4) ' 'j> 

X ;1 (S((& Nf), m, k) * vj> II 0, - rjlI -I 1 ; (19) 
m=l rj= oj 
~((j, Nj), Nj + 1) = e,. 

For crystals, the lattice sums replace (IO, - rj(l-’ by functions f(]] 0, - rj]]) [ 1, 31. 

3. CALCULATION OF THE TORQUE ON D, FROM GENERALIZED FORCES: 
THE INDUCED DIPOLE VECTOR CONTRIBUTION AND AN 

ALTERNATIVE ALGORITHM FOR THE CONTRIBUTION OF THE p(rj) 

Let 

U({q,}): potential energy as a function of generalized coordinates, {qk); (20a) 

X: a generalized coordinate which is an angle of rotation about 
an axis, n. Gob) 

The calculation of the induced dipole vector contribution must be based on the result 
that the generalized force with respect to x, --cXJ((qk})/~~, is the projection of the 
conventional Newtonian torque T upon n (see, e.g., [ 121) 

(T. n> = -W{q,lWx. (21) 

The potential energy for this system is given by 

Pa) 

The contribution of the p(rj) to UP,,, is given by a multipole expansion as 

U perm = c f 2 U(N,, N,), Pb) 
IA+91 NA=O NB=O 

U(N,, NJ = (-l)““{(N,! N,!)-‘PNA(A) PNB(B)} fi (s((A, N,), q) . VA’) 
q=1 

x fi (s((B, N,), m) . VcA’) lb, -~AII,G~~,~~)=co~,w. 
Wl=l 

For crystals, the lattice sums replace ]I rB - rA ]I-’ by functions f(]] r, - rA ]I) [ 1, 31. 
The moments and characteristic directions are those of Eq. (11). The potential energy 
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involving the induced dipoles of Eq. (3) is given by an extension to multipole fields 
[ 71 of the equation of Mandel and Mazur for dipole fields [ 131 

Uind = - d C C Irntk) Em((.i3 Ok)); 
k jtk 

(234 

E((j, 0,)): the electric field at the center of mass 0, of D, defined by 

Let 

the permanent charge density p(rj) of Dj. - (23b) 

XI: one of the three Eulerian angles for D, ; 

dx,>: the unit vector along the directed invariant axis for x,. 

Then, the projection of the torque along nkr) is given by 

ToII) = TpermoII) + TindOrt>, 

‘indht) = f 2 c (F) Efn((j~ Ok)) 
k i#k t 

+ ; C 1”(k) 

k#f ! 

“m;; Ok)) 1. 

t 

(244 

Wb) 

P5c) 

(254 

The algorithm depends upon the transformation between the following frames for 
each distribution: 

Lj: an intrinsic frame in which the components of the characteristic 
directions of Eq. (11) are computed; (264 

G: a global frame for {Dk}. Wb) 

The orientation of Lj in {Dk} is defined by the matrix M(G + Lj) for the basis vector 
transformation: 

(e,(Lj), ez(Lj), e,(LJ) = (e,(G), e,(G), e,(G)) M(G -+ Lj)* WC) 
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According to Eqs. (12), (25c), the partial derivative of both UP,., and of the field 
components are defined by partial derivatives of Maxwell invariant forms, 

Wax,) fi M(i, N), 4) - V’k’) II rm - r,ll- ’ ; (2% 
q=1 

for field components: i = k for all q: (27b) 

for permanent multipole energies: i = k for some q, and (274 
= m for the remainder; 

Wx,M(i, N), s> - V”) II rm - rk II -I = 0, when i # t. (274 

The algorithms for the Eulerian angle partial derivatives of the Maxwell invariant 
forms will be given in Section 3A, and those of the induced dipole vector components 
in Section 3B. 

3A. The Eulerian Angle Partial Derivatives of the Maxwell Invariant Form 

Since the components of the V operator are taken in frame G, it is necessary to use 
the partials of the G frame components given by the matrix equations, 1 ,< q <M: 

i # t: 0; Pa) 

i = t: 
[ 

3s ’ ((6 M), q, G)/axt 
as’((i, M), 4, G)/8xt - Mxt(G + L,) 
a~‘((& M), q, G)Iax, 

] - [;;iiEl;i;;;i]; (28b) 

MxI(G -+ L,): the partial derivative of the matrix M(G -+ L,) with respect 
to the Eulerian angle x,. (28~) 

The algorithms for the partial derivatives of Maxwell invariant forms of differen- 
tiable functions f(R) are simple extensions of the following algorithms for the 
invariant forms themselves: (i) efficient recursive algorithms for general f(R) [S, 
Method III], and forf(R) = R - ‘, as in Eq. (27) for a finite set of Dj [5, Method IV]; 
and (ii) an efftcient algorithm for lattice sums in crystals [5, Method II], which has 
been trivially extended to nonperiodic systems [S], and for which we have developed 
a similar recursive construction. (We have applied Method IV to nonperiodic systems 
and Method II to crystals extensively.) Consider, for example, Method IV for a finite 
set of distributions so that 

f(R)=R-‘. (29) 

It has been shown (cf. [S, Eq. (8)]) that 

n-1 
qcl (s((i,N),q).V)R-‘=R-‘2”-1’ 1 d(v,.Y,_,) fi xpi; (304 

Ayn-I) i=l 

N(n - 1) = {v, vi is a nonnegative integer and vi + v2 + vj = n - 1, IZ 2 2). WI 
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This can be evaluated by the efficient recursion given by [5, Eq. (9)]. Partial 
derivatives of such invariant forms have an analogous development: 

Z&i (s((i,N),q).V)R-l=O, if i#t l<q<n-L 

(314 
= R -(h-1) .(E,) 09 -1”,-101,)) ii x3 

i=l 

otherwise; 

N(n - 1) = {v, vi is a nonnegative integer and V, + v2 + v3 = n - 1, n > 2). Plb) 

The 4~~ Z- 10rt>> can be calculated by the following recursion analogous to that for 
the d(v, -i”, _ ,): Let the characteristic directions be ordered so that i = t for q = 1. 
Then, 

N(1) = {e ,:e,=(6:,,6~,6~),m=l,2,3}; Wa) 

z cd = Ps((t, w9 1 Px, 1; WI 

d(e,, Sq 01,)) = asY(t, N), 1 )Px,. (324 

For n > 1, each d(v, ‘Yn”,- i), computed from the recursion [5, Eq. (9)], yields the 
following 12 additions to the accumulators for the d(v, -i”,k,)) when i = t for q = n: 

A [d(v + ek, ~XY,))] - (2n - 1) as”((t, N), nPW(v, X-,), 1<k<3, 

A[d(v+2e,-e,, -1”,01,)>1 + vmwY(t9 WY n)Px,> 4% -i*,- A (324 
1<k<3, 1<m<3. 

Each d(v, .Y- 1h,)) always yields another 12 additions to the accumulators for the 

4% X(xJ>~ 

Finally, each d(v, <Yn”, i) yields the 12 additions [5, Eq. (9)] for use in Eq. (32d) for 
the next step, IZ + 1, of the recursion. 

3B. Eulerian Angle Derivatives of the Induced Dipole Vector Components 

3B 1. The Noncooperative Approximation 
In the noncooperative approximation, the electric field at a site k is given by the 

contribution of p(j), i.e., the contribution of the I(j), j # k, is omitted. Then, in the 
global reference frame G, 
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I”@, G) = $Y(k G)) c Eq((j, Ok>, G), 
j#k 

aIm((k G))/% = (1 - $1 a,“(+, G)) =‘((h Ok>, W%, 

(3% 

+ 6: c aag”((t, G>>Px,E”((j, O,), G). WI i+t 
Since the algorithm for the partial derivatives of the field components has been 
derived in Section 3A, it is only necessary to obtain those of the polarizability tensor. 
This is simplified if the intrinsic local frames Lj of Eq. (26a) are chosen as the prin- 
cipal axis frames for the polarizability tensors. Then 

a,m((t, G)) = i M(G+ L,);a;((t, L,)) M-‘(G -+ L,); 
C=l 

= c$ M(G -+ L,),mM(G -+ Lt>X((h L,)), 

(34) 

(35) 

3B2. The Cooperative Approximation 

In the cooperative approximation, it has been shown [2] that the components of 
the induced dipole vectors (when all terms in the equation for the energy involving 
either field derivatives or higher than quadratic products of field components are 
excluded [ 141) are given as the solution to a set of simultaneous linear equations 

The constant terms are 
c3jti-3 

0 = a&> c E'((h, 0,)). (36b) 
htj 

For the noncrystalline case (f(R) = R -I, cf. Eq. (29)), 

c:‘,‘,‘;_i=si,s;+(47r&,)-‘(l -s’,)]]oj-oh]]-” 

x {d(j) - %((k A> d,(j) n”((h, j))L (36~) 

n((k j>> = (Oj - oh> 11 Oj - ohI1 -‘a VW 

Partial differentiation of Eq. (36) with respect to each of the 3N different xt gives the 
following set of linear equations for the partial derivatives: 
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In this case, 

p3j+i-3 _ c3j+i-3 
3/l+s-3 - 3hts-3, 

p3j+i-3 
0 = 8 aaf(Wx, c ES(@, 0,)) 

h#t 

W’b) 

-6/(47x,)-’ c (1 -SF) 110, - 0,]]-3 
h 

Since the 3N sets of Eqs. (37a) for the 81/3x, have a common coefficient matrix, 
they need not be solved explicitly and multiplications with a 3N x 3N matrix can be 
avoided by regrouping the terms in the substitution in torque Eq. (25d) of the formal 
matrix solutions 

[Wxtl = c-‘PoWI; (374 
[I]: the [~Nx l] matrix whose element in row (3h + s - 3) is I”(h); PW 

[Potit)]: the [3N x l] constant matrices of equation systems (37a); WY 

C: the common (3N x 3N) coelficient matrix of equation systems (36a), 
(37a). (37g) 

The first term of Eq. (25d) becomes 

%E)[Wxtl = fW-‘PoW, (37h) 

where 

(E): the (1 x 3N) matrix whose element in column 3k + m - 3 is zjfk 
Em((.L Ok)). (37i) 

The algorithm proceeds in the following order: Step I. Solve the set of 3N linear 
equations (36) for the induced dipole vector components which enter the constants in 
the partial derivative equations. Step II. Solve a single set of 3N x 3N linear 
equations which is independent of xt. 

(x)C = (E). 

Use the solution to compute the first term of Eq. (25d) 

f(EWV~xtl = (xW’oCrt>l. 

WW 

WI 

Stillinger [ 151 derived an algorithm for the mutual forces exerted for the special case 
of spherically symmetric polarizable systems from a variational problem. It can be 
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shown that his result can be written as the analog of Eqs. (38a), (38b) for such 
systems. 

As an alternative to the direct solution of the linear equations, iterative solutions of 
Eqs. (36) can be constructed using the noncooperative approximation of Eq. (33a) as 
the initial (0) approximation in Step I. 

It should be noted that any convergence difficulties in the iteration arise solely 
from the iteration itself and are not intrinsic to the physical problem. 

The foregoing generalized forces can be simply related to the conventional 
Newtonian definition as follows: Let 

I 2 3. 
xt 3 xt 9 xt * the three Eulerian angles for D,; 

n((t, k)): the unit vector along the directed axis for xf; 

~i(ot> = 1 e(j, 0,)); 
j+t 

T’((j, 0,)): cf. Eq. (6). 

(394 

t39b) 

(39c) 

According to Eq. (21), the contravariant components of T(0,) with respect to the 
nonorthogonal bases set { n( (t, k))} can be computed by inversion of the equation 

-au/&: = (T(0,) - n((t, k))) = i: T’(O,)(n((h k)) . n((C i))>. 
i=l 

(40) 

4. SUMMARY 

The following considerations provide a basis for a choice between the two alter- 
native algorithms for the permanent multipole contribution to the torque (with the 
direct Newtonian formulation (Sect. 2); with the generalized force formulation 
(Sect. 3)) for different applications. 

Case I. Only the permanent multipole contribution to the torque is calculated. 

(i) The algorithm in the direct Newtonian formulation requires the deter- 
mination of three additional sets of characteristic directions in a local intrinsic frame 
prior to the calculation. 

(ii) Whereas the Newtonian formulation minimizes coding and debugging costs 
by using the same principal subroutines required by the permanent multipole energy 
calculation, the generalized force formulation requires a completely different code. 

(iii) The relative number of operations required by the two algorithms for each 
set of orientations of the charge distribution is close enough that, in applications, 
which algorithm proves to be more economical will depend less upon intrinsic 
differences than upon the relative effectiveness with which intermediate results are 
used, vanishing terms recognized, etc., in particular codes. 
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Case II. The induced dipole vector contribution is included. Since the generalized 
force algorithm must be coded and used for the induced dipole vector contribution, 
point (ii) does not apply, and only (i) and (iii) remain. Note also that the required 
recursions are simple extensions of efficient algorithms developed for and extensively 
tested in permanent multipole energy calculations. 

The range of applicability of the multipole calculation has been discussed in 
previous publications [5, 6,9]. 
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